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One of the objectives of the WFIRST Coronagraph Instrument is to demonstrate post-
processing algorithms for space-based exoplanet imaging data in the regime of very high 
contrast ratios (< 1E-8). We analyzed two 15-hour time series of laboratory images 
acquired with prototype coronagraph designs on a vacuum chamber testbed at JPL. 
These data sets enabled us to test the performance of reference differential imaging 
(RDI) PSF subtraction as a function of time and Euclidean (L2) speckle pattern distance. 
Starting from an analytical relationship between speckle pattern stability and classical 
subtraction gain, we compared the classical subtraction result to those of the KLIP RDI 
algorithm. In both data sets, KLIP RDI contrast gains are typically 3-4× greater than those 
of classical subtraction. These results suggest that a diverse reference PSF library will 
enable a significant gain in sensitivity beyond that suggested by the raw, frame-to-frame 
speckle pattern stability. 
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1. Image stability, correlation, and post-processing gain 

In a crude statistical model, we can represent the raw image as a random 
vector drawn from a normal distribution. Suppose the variance of this random 
vector, which sets the detection floor, is due exclusively to the raw speckle 
intensity pattern, ignoring other noise sources like photon counting noise. 

Let X be our time-averaged science image. We have already subtracted its 
spatial mean, so that E[X] = 0. Its variance is E[X2] = σ2 and we assume the 
underlying, non-stellar astrophysical signal contributes negligibly to this 
quantity. 

Y is our estimate of the star PSF in science image X. In classical PSF subtraction, 
Y is simply the nearest neighbor to X, in the L2 or Euclidean sense, among the 
images in the reference library. In the case of the KLIP subtraction algorithm, 
the estimate Y is formed from the principal components of a reference PSF 
library. Either approach can trivially compensate for a scale factor or DC offset 
between the science target star and the reference star PSFs. Therefore, once 
we have determined Y, subtraction is the only operation remaining to produce 
the post-processed image where we can search for signals above some 
threshold, before further analysis with forward-modeled photometry and 
astrometry.  

Intuitively, we expect the stability of the instrument to determine the distance 

Summary 

 We relate speckle stability to image correlation coefficients and 
reference differential imaging (RDI) post-processing gains. Stability 
metrics based on Euclidean (L2) distances between images are 
simple to define and measure, and they place a useful lower bound 
on the achievable RDI post-processing contrast gain. 
 

 We established a new diagnostic upper bound on contrast gain 
based on direct least-squares inversion. In conjunction with the 
lower bound on contrast gain determined from Euclidean distance 
metrics, this offers a convenient formula to bracket the worst and 
best expectable RDI performance on a given image sequence. 
 

 We applied the KLIP algorithm to measure post-processed RDI 
contrast gains over long time series of HLC and SPC images acquired 
on the WFIRST OMC testbed at JPL. In both data sets, KLIP contrast 
gains typically remain 3-4× greater than those of classical 
subtraction. 
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between Y and the star PSF in the science image X: with worse speckle stability, 
the expected L2 distance between X and Y will increase, as will the residual 
variance in the subtracted image. 

We can represent the difference between X and Y with a zero-mean, 
independent random vector named U, with variance 𝐸[𝑈 ] = 𝛿 : 

𝑈 ∶= 𝑋 − 𝑌 

The vector U can be interpreted as the change in the speckle pattern due to 
uncontrolled wavefront drifts. Its RMS value, δ, is the Euclidean distance 
between X and Y. It is convenient to normalize this distance to the RMS value 
of the raw science image, to form a distance metric that is independent of the 
intensity scale: 

‖𝑋 − 𝑌‖

‖𝑋‖
=

𝛿

𝜎
 

The expectation value of the normalized distance 𝜹 𝝈⁄  between two 
images acquired within some time interval is one possible metric for 
speckle stability. The gain in detection sensitivity after subtraction is the 
inverse of this ratio, 𝜎 𝛿⁄ . In other words, the post-processed contrast gain is 
the ratio of the image RMS values before and after subtraction. 

 

Another metric that can be used to quantify image stability is the correlation 
coefficient between two images, defined by: 

𝜌 =
𝐸[𝑋𝑌]

𝐸[𝑋 ]𝐸[𝑌 ]
 

Using 𝐸[𝑌 ] = σ2 + 𝛿 , we can express 𝜌  in terms of 𝜎 and 𝛿: 

𝜌 =
1

1 +
𝛿
𝜎

  

Here we used the fact that 𝐸[𝑋𝑌] = 𝐸[𝑋 ], since X and U are independent. 

Rearranging for 𝜎 𝛿⁄  allows us to predict the contrast gain after subtracting a 
reference image with a known correlation coefficient: 

Key definition  

Throughout this paper we will assess the efficiency of post-
processing algorithms using the post-processing gain 
metric: 𝜎 𝛿⁄   
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𝜎

𝛿
=  

1

1/𝜌 − 1
 

The above relationship is exact for the case of classical PSF subtraction, since 
the residual noise is by definition the component of X that is uncorrelated 
with Y. However, when we use principal components to construct the 
estimate Y, the raw frame-to-frame correlations will always underestimate 
the actual post-processing performance. In the next section, we show how 
this affects the contrast gain on some example data sets.
 
2. RDI analysis of testbed data 

2.1. Experiment context and approach 
 

We can use a long sequence of laboratory coronagraph images to test the 
Reference Differential Imaging (RDI) performance in the presence of a drifting 
wavefront, and compare the contrast gain against that predicted by raw frame-
to-frame statistics. In early 2017, an image sequence of approximately 15 
hours duration was recorded for each coronagraph type, Hybrid Lyot 
Coronagraph (HLC) and Shaped Pupil Coronagraph (SPC). 

In each sequence, the deformable mirror (DM) actuator commands were fixed 
according to an initial satisfactory “dark hole” solution. Over the span of the 
long data sequence, the speckle pattern is gradually altered and the overall 
contrast level is degraded. Based on discussions with WFIRST stakeholders, 
we speculate that the source of this degradation is due to slow transients in 
the DM actuator response. The origin and detailed behavior of these transients 
at the hardware level are the subject of a separate investigation by WFIRST 
project engineers at JPL, and we do not use the datasets to investigate their 
source. Here we merely use the drift to in the coronagraph response to 
empirically study the impact of changing high-spatial-frequency wavefront 
errors on RDI post-processing. 

Since the images were acquired in one contiguous sequence on a single lab 
source, we must arbitrarily split the data between “reference” and “science” 
subsets. Accordingly, for these RDI trials we assign a subset of frames near the 
beginning to the reference library. To test RDI performance over a wide range 
of image correlation levels, we then perform RDI on individual science frames 
spanning the time series. We performed a similar RDI experiment on SPC lab 
data in the previous year, however with a much shorter 3-hour time 
sequence1. 

                                                 
1 http://www.stsci.edu/wfirst/technicalreports/WFIRST-STScI-TR1605.pdf 
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2.2. Pre-processed image statistics 
 

Figure 1 shows the correlation coefficients between all pairs of images in the 
SPC data set, after they were match-filtered using an off-axis PSF model. The 
gradual decorrelation of the speckle pattern is evident from the drop in 
correlation values between images from the beginning and end of the data 
sequence, reaching down to almost 0.91 in the worst cases.  

 
Figure 2 
shows the 

correlation coefficients between each “science” frame and its nearest neighbor 
(maximum correlation) in the initial 4-hour “reference” library, for both data 
sets. The rate of decorrelation witnessed in the HLC sequence is noticeably 
faster. 

Figure 1: Frame-to-frame correlation coefficient matrix of the full SPC image 
sequence, after applying the PSF matched filter. The first 200 images (4 hours) 
define the reference library; the remaining frames are treated as individual science 
frames to test PSF subtraction for various correlation levels. 
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Figure 
3 

displays maps of the temporal RMS variation in each pre-processed image 
sequence. These maps illustrate the fact that strongly varying speckle 
features are concentrated in specific regions of the FoV rather than uniformly 
distributed. Data animations (not shown here) reveal that the changes in the 
intensity pattern are secular rather than cyclical in nature, consistent with 
degradation in the wavefront as the deformable mirror actuators drift away 
from the “dark hole” solution, and similar to trends observed in previous SPC 
lab data. The goal of the present report is to quantify how much post-
processing can mitigate these DM induced starlight suppression drifts. 

Figure 2: Frame-to-frame correlation coefficient between each “science” frame 
and its nearest neighbor in the reference library. The rate of decorrelation is much 
higher in the HLC data. 
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Figure 3: Map of the temporal RMS over the full data sequence, measured in each pixel, in units of 
normalized intensity (contrast equivalent). Top: SPC, Bottom: HLC. 

 
 
 
 
 
 
 

2.3. Post-processing results 
 

Figure 4 shows the post-processed contrast gains we measured for the SPC 
and HLC data. We measure the contrast gains as the ratio of spatial standard 
deviations of the matched-filtered image before/after subtraction, averaged 
over the field of view. We chose to use matched filter instead of aperture 
photometry in order to simulate realistic detections scenarios with the SPC 
coronagraphs (whose elongated PSF with side lobes need to be treated using 
cross correlation).  
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Figure 4: Contrast gain for each science frame in the SPC (top) and HLC (bottom) data sets, annotated 
with elapsed time since the end of the reference library acquisition. The classical gain curve (dashed) 
indicates the contrast gain after the subtracting the max-correlated reference library image. The KLIP 
gain curve (solid) indicates the contrast gain after subtracting the PSF estimate determined from the 
principal components of the 200-frame reference library. The dotted line is the direct, overdetermined 
least-squares subtraction of reference images, representing an upper bound diagnostic. 

 
 

2.3.1. Classical subtraction 
 
For the case of classical PSF subtraction, the contrast gains are nearly exactly 
those predicted by the peak reference library correlation levels for each 
science frame in Figure 1. For example, in the first science image, frame 

SPC data 

HLC data 
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#250, acquired approximately 1 hour after the end of the reference library 
sequence, the peak reference library correlation is 0.9998. Our formula in 
Section 1 predicts a gain of 50× for this correlation value, which is very near 
the 47.5× measured in the residual image. At the end of the science sequence, 
frame #760, when the peak reference library correlation is only 0.946, we 
expect a contrast gain of 2.9×, again very near the measured gain of 3.0×. 
 

2.3.2. KLIP subtraction 
 
Consistent with our previous experience, applying the KLIP algorithm to 
form the PSF estimate significantly improves the contrast gain. As for the 
classical case, these contrast gains are determined by the comparing the 
spatial RMS before and after subtracting the PSF estimate. However, with 
PCA-based PSF subtraction methods, we must correct for the over-
subtraction (or over-fitting) of astrophysical point sources. 
 
Suppose Z is the matrix of eigenimages computed from the reference library, 
where each column is an eigenimage. And suppose P is the vector PSF model 
at a given field point, with its spatial mean subtracted. We can then measure 
the scalar attenuation of a source at this location in terms of matched filter 
“throughput”, based on the inner product between P and 𝑍𝑍TP, the latter 
term containing the projection of P onto Z: 

KLIP throughput, 𝛼 = 1 −
𝑃 𝑍𝑍 𝑃

𝑃 𝑃
, 

resulting in a corrected post-processing gain expression: 

𝐸[𝛼]
𝜎

𝛿
 

where E[𝛼] is the mean point source attenuation measured over a large 
sample of positions in the FoV. Note that this formula only holds perfectly 
when the reference images do not contain planet signal. This is the case in 
our RDI scenario, but it is important to note that it is only an approximation 
in the case of Angular Differential Imaging (ADI).  We use an ideal, position-
dependent off-axis PSF model specific to each coronagraph to compute E[𝛼] 
(for the bowtie-shaped SPC FoV, 6 angular separations and 10 position 
angles; for the annular HLC FoV, 9 angular separations and 24 position 
angles). The resulting contrast gains are plotted in the solid curve in Figure 4. 
They range from 60× for frame #250 to 11× for frame #760. 
 
 

2.3.3. Direct least-squares subtraction 
 
The third type of curve we plotted in Figure 4 is a diagnostic upper bound on 
RDI performance. This diagnostic provides a rapid assessment that bypasses 
the steps in the KLIP algorithm of matrix factorization, basis truncation, off-
axis PSF modeling, and over-subtraction calibration. We instead compute the 
subtracted PSF estimate as a direct least-squares fit from the reference 
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library. Suppose R is the matrix of reference library images, where each 
column is a reference image. We represent the fit to science image X as an 
over-determined least-squares problem, 

R𝛽 = X. 
The least-squares coefficient solution vector is given by 

𝛽 = 𝑅 𝑋,  
where R† is the left pseudo-inverse of the reference matrix, 𝑅 = (𝑅 𝑅) 𝑅 . 
In practice the matrix (𝑅 𝑅) is not guaranteed to be invertible, and the mode 
cutoff in the KLIP algorithm serves a regularization mechanism. As a 
consequence using the 𝛽 coefficients based on the inversion of a poorly 
conditioned matrix will lead to severe signal over-fitting.  However, since we 
are merely estimating an upper bound on the post-processing gain, it is 
acceptable to use a simple mathematical formula that emulates an algorithm 
with very low planet throughput. Under this formalism, the PSF estimate is: 
  

𝑋 = 𝑅𝛽 
         = 𝑅𝑅 𝑋. 

 
In our plots in Figure 4, the resulting contrast gain, 

𝜎

𝛿
=

‖𝑋‖

𝑋 − 𝑋
 

is the dotted curve labeled ‘Overdet.’ Again we emphasize that this direct 
least-squares approach runs the risk of severe oversubtraction, which is 
deliberately not accounted for in this purely diagnostic metric. Interestingly, 
for the HLC data the ‘Overdet’ contrast gains remain within just a few percent 
of the KLIP result. This is probably due to lower correlations both within the 
reference library and between each science image and the reference library. 
In this scenario the direct least-squares problem is less ill-posed, and thus 
the un-regularized solution is not plagued by over-subtraction. We checked 
the ratio of max/min eigenvalues for both the HLC and SPC covariance 
matrices, and found that it is 2 orders of magnitude lower for the former, 
which is consistent with our interpretation. 
 
 
 

2.3.4. KLIP versus classical subtraction as a function of 
correlation 

 
We plot the contrast gains again in Figure 5, this time against reference 
library correlation coefficient on a scale that is linear in terms of inverse L2 
distance metric (𝜎 𝛿⁄ ). This serves to demonstrate that the contrast gain 
measured after classical subtraction matches very closely the value predicted 
based on the correlation value of the reference frame used to form the PSF 
estimate (selecting the single reference frame with the maximum 
correlation). 
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Figure 5 - Contrast gain in post-processed SPC data as a function of reference library nearest neighbor 
correlation coefficient (bottom axis), and the equivalent L2 distance metric (top axis). The predicted line 
(dashed gray) is the value of the inverted correlation formula, solved for 𝜎 𝛿⁄  . The classical contrast gain 
points (dots) are the measured RMS ratio before/after classical subtraction. The KLIP contrast gain points 
(crosses) are the measured RMS ratio before/after subtraction, corrected for point source oversubtraction. 

The post-processing advantage of KLIP over classical subtraction is above a 
factor of 3 for all science frames beginning from frame #340 (2.7 hours 
elapsed from the final reference image). In Figure 6, we plot the ratio of KLIP 
gain over that of classical subtraction, showing that the advantage factor falls 
in the range 3 to 4 for all images except for the three most highly correlated 
frames at the beginning of the trial sequence. The gain ratio remains roughly 
flat out to the most distant (worst case) images. 

 
Figure 6 - Ratio of spatial mean contrast gains achieved with KLIP over classical subtraction, plotted 
against reference library nearest neighbor correlation. 
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Appendix A. Matrix algebra KLIP recipe 
 
Here we translate the KLIP algorithm (Soummer, Pueyo, & Larkin, ApJ, 2012; 
hereafter abbreviated SPL2012) from its textbook formalism to a compact, 
matrix algebra recipe. The vectorized form of the recipe elucidates two 
features: (1) the convenient substitute of the reduced SVD factorization for 
the covariance matrix approach when computing an eigenimage basis; (2) 
the underlying connection between KLIP and direct, least-squares, LOCI PSF 
fitting. 
 
First we arrange n spatial-mean-subtracted reference images, each with m 
pixels, in columns to form the reference image array 𝑅 (m rows x n columns 
and m > n). The empirical covariance matrix of the reference images, 𝑅 𝑅, is 
diagonalized by the eigendecomposition: 

𝑅 𝑅 = 𝑉𝛬𝑉  
Here V is a square matrix consisting of n columns of eigenvectors, and 𝛬 is an 
nxn diagonal matrix. 
 
Substituting for the SVD factorization of 𝑅, 𝑅 = 𝑈𝛴𝑉 , leads to the 
relationship between the eigenvalues of the covariance matrix, the singular 
values of 𝑅, the eigenvectors of the covariance matrix, and the singular 
vectors of 𝑅: 

𝑅 𝑅 = 𝑉𝛴 𝑈 𝑈𝛴𝑉  
          = 𝑉𝛴 𝛴𝑉  

Therefore, the eigenvectors of 𝑅 𝑅 are equal to the right singular vectors of 
𝑅. Furthermore, 𝛬 = 𝛴 𝛴 and each eigenvalue along the diagonal is the 
square of a corresponding singular value. 
  
The unitary property of 𝑉, 𝑉 𝑉 = 𝐼, permits us to rearrange the SVD 
expression for the left singular vectors: 

𝑅𝑉 = 𝑈𝛴 
and then 

𝑅𝑉𝛴 = 𝑈  
where 𝛴  is the nxm pseudoinverse of the singular value matrix 𝛴, and each 
element value along the diagonal of 𝛴  is the inverse of its corresponding 
element in 𝛴, and equivalently the inverse of the square root of the 
corresponding eigenvalue in 𝛬. The n subscript on 𝑈  serves to indicate that 
only the first n columns of 𝑈 are recovered since the last m - n columns of 𝛴  
are zero columns. In effect, 𝑈  is the left singular matrix for a "reduced" or 
"thin" SVD factorization in which we restrict ourselves to computing only n 
singular vectors instead of the larger mxm matrix. In the NumPy linear 
algebra function numpy.linalg.svd(), for example, the reduced SVD option is 
selected by the specifying the parameter full_matrices=False. 
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One of the critical steps in the KLIP algorithm is the K-L transform of the 
reference image array, as described in Equation 5 of SPL2012. Summation 
algebra notation is used there to express the matrix product between the 
reference data and the covariance eigenvectors (𝑉), and the column-wise 
scaling of each resulting basis vector by the inverse square root of the 
eigenvalue. Careful comparison to the factorization of the left singular 
vectors, 𝑅𝑉𝛴 , shows that this expression is mathematically identical. In 
other words, the K-L transformed basis matrix referred to as 𝑍 in SPL2012 
Eqn 5 can be computed directly as: 

𝑍 = 𝑅𝑉𝛴  
    = 𝑈  

Before truncating the basis, 𝑍 has dimensions mxn (discarding the last m - n 
zero columns). Furthermore, the first n columns of 𝒁 and 𝑼 are equal, so 
we can obtain 𝒁 directly from the reduced SVD of 𝑹. 
  
Now, suppose we have a column vector 𝑦 representing a science image we 
wish to fit as an expansion on 𝑍, the K-L eigenimage basis. As a regularization 
strategy to prevent overfitting the non-stellar astrophysical signal in 𝑦, we 
truncate 𝑍 to k < n basis vectors. Let us call the resulting mxk basis matrix 𝑍 . 
By a matrix product, we can project 𝑦 on 𝑍  and sum the corresponding 
linear combination of vectors from 𝑍  (SPL2012 Eqn 8): 

𝑦 = 𝑍 𝑍 𝑦 
   
The above expression for our PSF estimate, 𝑦 = 𝑍 𝑍 𝑦 can also be 
interpreted as a low-rank approximation to the expansion of 𝑦 as a direct 
linear combination of reference images. Suppose 𝛽 represents the unknown 
coefficients that solves the system of linear equations 𝑅𝛽 = 𝑦. The 
overdetermined least-squares coefficient solution is 𝛽 = 𝑅 𝑦, where 𝑅 is the 
left pseudoinverse (𝑅 = (𝑅 𝑅) 𝑅 ) and the expansion of 𝑦 on 𝑅 is 𝑦 =
𝑅𝑅 𝑦. If we now expand 𝑅 and 𝑅  by their respective SVD factorizations, we 
find: 

𝑦 = 𝑅𝑅 𝑦 
    = 𝑈𝛴𝑉 𝑉𝛴 𝑈 𝑦 
    = 𝑈𝛴𝛴 𝑈 𝑦 
    = 𝑈 𝑈 𝑦 

In the last line we discarded the last m - n singular vectors from 𝑈 due to the 
fact that the last m - n columns of 𝛴𝛴  are zero columns. Then the reference 
image expansion reduces to the formula for the KLIP PSF estimate 
without basis truncation. 
  
Typically, if we fit our PSF to a linear combination of columns in 𝑅 and do not 
apply some form of regularization, as through the KLIP method of basis 
truncation, then we face a numerically ill-conditioned problem. This 
introduces the risk of overfitting the astrophysical signal, and furthermore 
the level of bias will be sensitive to noise in the data. This numerical 
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instability is the essential disadvantage of LOCI, the least-squares PSF 
subtraction algorithm first proposed for high-contrast imaging data 
(Lafreniere et al., 2007). 
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Appendix B. Supplemental SPC data analysis 
 

 
Contrast gain measured independently in each half of the SPC bowtie FoV. The contrast gain is generally 
higher in the right-hand side of the FoV where the speckle pattern is relatively stable (cf. Figure 3). 
Another consequence of the high right-hand-side correlations (> 0.995) between science image and 
reference library is that the classical gain approaches much closer to the KLIP gain. 

 
Ratio of spatial mean contrast gains achieved with KLIP over classical subtraction, measured 
independently in each half of the bowtie FoV, plotted against reference library nearest neighbor 
correlation. 



 17

 
Example KLIP RDI applied to SPC frame number 760 (the last science frame in the trial, with 
correspondingly lowest reference correlation and worst contrast gain) with a fake planet inserted in the 
left-hand side of field of view at 3E-8 contrast. 
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Figure 8 - Distribution of pixel values in the pre-processed SPC image (blue), after KLIP subtraction 
(orange), and PSF matched filter (green). The upper histogram shows the distribution on a logairthmic 
intensity scale, and the bottom histogram shows the residual values on a linear intensity scale. Vertical 
lines show the flux of the inserted fake planet, and its corresponding peak value in the final KLIP-
subtracted, matched-filtered image. 


